We will begin by proving that ¯¯¯¯¯¯¯¯¯z1z2=¯¯¯¯¯z1¯¯¯¯¯z2
for any two complex numbers z1 and z2
Let z1=x1+iy1 and z2=x2+iy2. Then
¯¯¯¯¯¯¯¯¯z1z2=¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯(x1+iy1)(x2+iy2)=¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯x1x2+i(x1y2+y1x2)−y1y2=x1y2−i(x1y2+y1x2)−y1y2=(x1−iy1)(x2−iy2)=¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯(x1+iy1)¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯(x2+iy2)=¯¯¯¯¯z1¯¯¯¯¯z2
The rest of the proof follows fairly simply. I will try to be as explicit as possible. We can write
¯¯¯¯¯z4=¯¯¯¯¯¯¯¯¯¯z2z2=¯¯¯¯¯z2¯¯¯¯¯z2=(¯¯¯z¯¯¯z)(¯¯¯z¯¯¯z)=¯¯¯z4
Q.E.D.